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C O N S P E C T U S

We review recent work on the waiting time dynamics of coher-
ent two-dimensional infrared (2DIR) spectroscopy. This

dynamics can reveal chemical and physical processes that take place
on the femto- and picosecond time scale, which is faster than the
time scale that may be probed by, for example, nuclear magnetic
resonance spectroscopy. A large number of chemically relevant pro-
cesses take place on this time scale. Such processes range from
forming and breaking hydrogen bonds and proton transfer to sol-
vent exchange and vibrational population transfer.

In typical 2DIR spectra, multiple processes contribute to the wait-
ing time dynamics and the spectra are often congested. This makes the spectra challenging to interpret, and the aid of the-
oretical models and simulations is often needed. To be useful, such models need to account for all dynamical processes in
the sample simultaneously. The numerical integration of the Schrödinger equation (NISE) method has proven to allow for
a very general treatment of the dynamical processes. It accounts for both the motional narrowing resulting from solvent-
induced frequency fluctuations and population transfer between coupled vibrations. At the same time, frequency shifts
arising from chemical-exchange reactions and changes of the transition dipoles because of either non-Condon effects
or molecular reorientation are included in the treatment. This method therefore allows for the disentanglement of all
of these processes.

The NISE method has thus far been successfully applied to study chemical-exchange processes. It was demonstrated that
2DIR is not only sensitive to reaction kinetics but also to the more detailed reaction dynamics. NISE has also been applied
to the study of population transfer within the amide I band (CO stretch) and between the amide I and amide II bands (CN
stretch and NH bend) in polypeptides. From the amide I studies, it was found that the population transfer can be used to
enhance cross-peaks that act as structural markers for �-sheet structure in proteins. From the amide I/II investigation, it
was found that the amide II band and the hydrogen-bond stretch vibration are important parts of the relaxation pathway
for the amide I vibration. With the development of simple approximations, it becomes possible to apply the NISE method
even to very big systems, such as the OH stretch of bulk water, which can only be described well when large numbers of
coupled vibrations are taken into account.

Introduction
Numerous important processes, ranging from elec-

tron transfer to hydrogen-bond exchange and

molecular reorientation, happen on the ultrafast

(femto- and picosecond) time scale. Such molecu-

lar-scale processes are important in diverse fields,

such as biology, where enzymes perform their

function, but also in nano technology, where arti-

ficially made molecular motors are developed to

perform specific tasks. To understand and possi-

bly control the operation of such systems, one

needs to be able to follow the underlying dynam-

ics. A successful example is the molecular-scale

flow of electronic excitation energy in biological

light-harvesting systems, which has been studied

in great detail using pump-probe spectroscopy.1

However, many interesting systems do not have

optical transitions and, therefore, require other
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ultrafast spectroscopic techniques to resolve their dynamics.

One particularly well-suited method is two-dimensional infra-

red (2DIR) spectroscopy.2

2DIR spectroscopy is a four-wave mixing technique. It

involves the excitation of the system with a pump-pulse pair.

After a time of free evolution, denoted as the waiting time, the

state of the system is read by applying a probe pulse and

measuring the emitted signal. The technique is therefore a cor-

relation spectroscopy with similarities to two-dimensional

nuclear magnetic resonance (2DNMR).3 It allows one to fol-

low what happens to the vibrations in a molecule after an ini-

tial excitation and provides a two-dimensional spectrum that

reveals information on dephasing of the individual vibration

and coupling between different vibrations. The latter allows for

the determination of structural parameters.4 However, the real

power of 2DIR is its ability to follow femto- and picosecond

dynamics in real time by varying the waiting time in the

experiment. This allows the tracking of fast chemical

exchange,5,6 vibrational energy transport,7,8 and orientational

dynamics.9 We refer to this as the waiting time dynamics of

the 2DIR spectra.

Experimentally 2DIR spectroscopy has successfully been

applied to a wide range of systems.10 The spectra are, how-

ever, often congested and complex to interpret. This calls for

a good theoretical method to model the spectra. Of course,

such a method should be able to account for all of the dynam-

ics in the system. The simplest simulation methods are com-

pletely static and do not allow us to account for any dynamics.

In this paper, we will review recent progress in simulating and

interpreting two-dimensional infrared spectra with waiting time

dynamics. The focus will be on the application of the numer-

ical integration of the Schrödinger equation (NISE) method.

The main advantage of NISE over other methods is that it can

be used to simulate the spectra even when multiple dynam-

ical processes are entangled. In the following section, the NISE

method will be outlined. Next, we will discuss three applica-

tion areas. Finally, in the Outlook section, we will discuss pos-

sible future applications of the method as well as alternatives

and improvements of it.

Method
In the NISE method11-13 for calculating the nonlinear

response, the sample is divided into the part that directly inter-

acts with the applied laser fields (denoted the system) and the

remaining part that does not (denoted the bath). It is assumed

that the system is affected by the applied fields and the bath

but that the state of the system does not affect the bath. The

system is treated quantum-mechanically, and its evolution can

be described by the time-dependent Schrödinger equation

dΦ(t)
dt

)- i
p

H(t)Φ(t) (1)

where the wave function Φ(t) describes the state of the quan-

tum system and the effective system Hamiltonian H(t) fluctu-

ates because of the perturbations caused by the bath. The

time evolution of the bath is then first determined, either by

means of Molecular Dynamics (MD) simulations or by using a

stochastic model. The state of the bath along the trajectory is

used to construct the trajectory of the fluctuating Hamiltonian,

where either a model or a first-principles map is used to trans-

late the bath coordinates into an effect on the Hamiltonian.

The time-dependent Schrödinger equation cannot be solved

directly when the Hamiltonian is time-dependent. Therefore,

the trajectory is divided into short intervals during which the

Hamiltonian can be taken to be constant.14 The time evolu-

tion during each interval can then be determined by a time

evolution matrix given by a simple matrix exponent.

U(t + ∆t, t) ≡ exp(- i
p

H(t)∆t) (2)

The time evolution for longer times is found by time-ordered

products of the time evolution matrices for the short intervals.

The generic Hamiltonian used to describe 2DIR experi-

ments is of the form

H(t) ) ∑
i

ωi(t)Bi
†Bi + ∑

j*i

Jij(t)Bi
†Bj - ∑

i

∆i(t)
2

Bi
†Bi

†BiBi +

∑
i

µbi(t)Eb(t)(Bi
† + Bi) (3)

Here B† and B denote, respectively, the Bosonic creation and

annihilation operators of vibration i, with frequency ωi. Jij is the

coupling between a pair of vibrations; ∆i is the anharmonic-

ity of a vibration; and µbi is the transition dipole vector. The

externally applied laser field is Eb(t). The fluctuating frequen-

cies, anharmonicities, and dipoles are typically extracted from

MD simulations by using ab initio mappings, which relate

these quantities to the electrostatic potential or field caused by

the environment at the positions of the atoms involved in the

vibration. Such mappings already exist for the amide modes

of peptides,15-19 the OH stretch of water,20 and the CN stretch

of nitriles.21 The long-range couplings Jij are typically given by

transition dipole22 or transition charge23,24 coupling schemes.

For short-range interactions, maps relating the coupling to the

Ramachandran angles between amide units in peptides have

been constructed using ab initio calculations.22,24,25
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The 2DIR spectrum consists of six types of contributions,

namely, the ground-state bleach (GB), the stimulated emis-

sion (SE), and the excited-state absorption (EA), each of which

has a rephasing and a non-rephasing form. These six contri-

butions are illustrated by their double-sided Feynman

diagrams26,27 in Figure 1. In the GB signal, the first laser pulse

brings the system into a coherent superposition of a single

excited state and the ground state. The system is brought back

to the ground state by the second laser pulse, and during the

waiting time (t2), it is left here. Then, the third pulse again

brings the system into a coherent superposition of a single

excited state and the ground state, which finally relaxes to the

ground state by the emission of the signal. The SE contribu-

tion differs from the GB in that the system is left in a single-

excited-state population or a coherent superposition between

two single-excited states during the waiting time. Finally, the

EA is only different from the SE by the fact that the last laser

pulse brings the system into a coherence between double-

and single-excited states. This last contribution thus involves

the double-excited states, making it sensitive to the anharmo-

nicity. If the anharmonicity is zero (i.e., the system is har-

monic), the total signal vanishes as a consequence of

cancelations between the various contributions.28

The simulation of these signal contributions each involves

a four-point correlation function of the transition dipoles. Time

evolution operators are sandwiched between the transition

dipoles to account for the time evolution between the inter-

actions with the laser pulses.12 The two-dimensional spectra

are obtained by Fourier transforming the signal with respect

to the delay between the first and second pulse as well as

Fourier transforming with respect to the time delay between

the last pulse and emission of the signal. The frequency asso-

ciated with the first (second) Fourier transform is denoted

ω1(ω3). For each fixed waiting time t2, the spectrum may now

be plotted as a function of ω1 (horizontal axis) and ω3 (verti-

cal axis). The waiting time dynamics is revealed by analyz-

ing the t2 dependence of the spectra.

A flow chart for the general simulation protocol is given in

Figure 2.

Examples of Applications
Chemical Exchange. Chemical reactions are traditionally

studied in cases far from equilibrium, with excess of the reac-

tants and following the build up of product molecules under

the assumption that the reaction can then be seen as irrevers-

ible. Correlation spectroscopies offer the possibility to study

chemical reactions as they happen in equilibrium. This has

been exploited to measure reaction kinetics and unravel reac-

tion pathways with NMR spectroscopy.29 While NMR spectros-

copy allows us to directly follow reactions on the micro- and

nanosecond time scales, 2DIR spectroscopy opens a window

to observe femto- and picosecond processes.6

For simulation purposes, the NISE method has the advan-

tage over other methods that it can go beyond the approxi-

mation of Gaussian fluctuations. This approximation underlies

the second-order cumulant-based methods.30,31 Moreover,

NISE allows one to go beyond the Kubo jump models for

modeling chemical exchange and, therefore, enables the sim-

ulation of exchange dynamics and not merely exchange kinet-

ics.32 Simulations of model systems can be performed using,

FIGURE 1. Double-sided Feynman diagrams illustrating the six
contributions to the 2DIR signal. The arrows indicate the
interactions with the laser pulses. The numbers 0, 1, and 2 denote
the ground, single excited, and double excited states, respectively.
The pairs of numbers indicate the density matrix of the system
between the applied pulses. The waiting time is indicated with t2.

FIGURE 2. Flow diagram for the NISE procedure.
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for example, a Langevin equation for the exchange process.

This approach was used by us in ref 32 to investigate chem-

ical exchange in a double-well potential.

The Langevin equation for a single reaction coordinate was

written

md2x
dt2

)- dU(x)
dx

- mγdx
dt

+ F fluc(t) (4)

where m is the mass connected with the coordinate x, U(x) is

the potential, and γ is the friction constant determining the

coupling strength with an external heat bath. F fluc is a ran-

dom fluctuating force for which Gaussian white noise was

used, imposing the correlation function requirement

〈F fluc(t)F fluc(0) 〉 ) δ(t)γmkT (5)

The vibrational frequency of the observed mode was assumed

to be proportional to x. The two-dimensional spectrum corre-

sponding to motion in a double-well potential was then sim-

ulated.32 The potential was given by

U(x) ) {1
2

k(x - r)2, xg 0

1
2

k(x + r)2, xe 0
(6)

The resulting spectra obtained with a suitable set of model

parameters32 are shown in Figure 3. In the used potential, it

took about 500 fs to move from one well to the other. This

finite reaction time33 can be observed in the spectra, where

the cross-peaks resulting from the exchange process do not

start to grow before this barrier crossing time is reached. While

thus far such dynamical delays have not been reported in two-

dimensional infrared spectra, they have been observed for

electron-transfer processes using optical pump-probe tech-

niques.34

For experimentalists, a simple estimate of the expected

finite reaction time is useful. In ref 33, rather elaborate esti-

mates are given for different cases. However, a lower limit can

be given by using the root-mean-square velocity of a particle

with mass M in the gas phase, traveling along the reaction

path with length d. The travel time is then tB ) d�(M/3RT),

where R is the gas constant and T is the temperature. A reac-

tion barrier and the viscosity of the solvent can only be

expected to increase this time. For the chemical-exchange

experiment on Fe(CO)5 reported in ref 5, filling in the mass of

carbon monooxide and a reaction distance of 3 Å gives an

estimated time of 300 fs, well below the detection limit of 1

ps of the experiment. With state-of-the-art 2DIR equipment,

having pulse widths below 100 fs, the finite reaction time

should, however, be possible to detect in the Fe(CO)5 system.

Alternatively, one could use heavier ligands, lower tempera-

ture, or a more viscous solvent to increase the finite reaction

time.

Population Transfer in Proteins. The amide I band of

proteins has received a lot of attention, mostly because this

band is intense and the coupling between amide I modes

along the protein backbone is strong enough to create collec-

tive vibrational modes that depend upon the protein struc-

ture. This makes it possible to use 2DIR spectra to distinguish

between different secondary structures, such as R helices,8 �
sheets,35 and 310 helices.36 The hypothesis of Davydov37 that

energy might be transported efficiently through the amide I

modes of, in particular, R helices has sparked studies of the

population transfer between amide I modes.7,38

In ref 39, the NISE method was applied by us to simulate

the population transfer between amide I modes in a � hair-

pin, trpzip2, in aqueous solution. In the hairpin, two domi-

nant excitonic bands exist in the amide I region. These are

denoted (a-)s and (a+)s.40 The simulations showed vibrational

population transfer between these two states on a 500 fs time

scale (Figure 4). In the 2DIR spectrum, this results in the

growth of the cross-peaks between these two states and a

decay of the diagonal peaks upon increasing the waiting time

(see Figure 5). The cross-peaks between the (a-)s and (a+)s

states are used as structural markers for �-sheet structure,35

and it was therefore proposed by us that increasing the wait-

ing time can be used to enhance such structural markers.

FIGURE 3. 2DIR spectra of chemical exchange in a symmetric
double-well potential. The red contour lines indicate bleaching and
stimulated emission, and the blue lines indicate excited-state
absorption. Reprinted with permission from ref 32. Copyright 2008,
American Institute of Physics.
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The states in the amide I band turn out to have a relatively

short vibrational lifetime of the order of 1 ps.2,41 Such a short

lifetime is of course unfavorable for energy transport. It has

been suggested that the reason for the short lifetime is effi-

cient population transfer to other modes, such as the amide

II band and interpeptide hydrogen-bond vibrations.7,41-44 The

NISE method was applied19 to the N-methyl acetamide

(NMA-d) molecule solvated in D2O, treating both the amide I

and amide II vibrations quantum-mechanically and other coor-

dinates, such as the hydrogen-bond vibrations, classically. It

was found that the hydrogen-bond fluctuations facilitate an

efficient population transfer between the amide I and amide

II modes. A population transfer time from amide I to amide II

of 790 fs was found, and it was demonstrated that this can be

extracted from the relative intensity between cross-peaks and

diagonal peaks in the 2DIR spectrum (see Figure 6).19 This

suggests that the dominant relaxation pathway of the amide

I mode in solution occurs via the amide II mode and the

hydrogen-bond vibration for which the oxygen atom is an

acceptor. Others have suggested alternative relaxation

pathways,43-45 which cannot be completely excluded from

the above simulation. However, clear experimental evidence

exists for the presence of the amide I to amide II transfer,

while other pathways have thus far not been observed.41

Bulk Water and Large Systems. Pump-probe experi-

ments demonstrated that the anisotropy of the OH stretch

vibration in bulk water decays on a sub 200 fs time scale

because of exciton transport between different water mole-

cules.46 Simulation of the exciton transfer in water confirmed

this interpretation.47 In more recent 2DIR experiments,48 the

spectral diffusion resulting from the exciton transfer was

observed as well. The simulation of the 2DIR spectrum of bulk

water is particularly challenging because of the large num-

ber of coupled oscillators that one needs to treat. This is in

particular a problem for the propagation of the double-ex-

cited states involved in the excited-state absorption signal. The

number of these states grows as N × (N + 1)/2, where N is the

number of oscillators. By introducing an approximation that

splits the propagation of the double-excited states into a har-

monic and an anharmonic term, Paarman and co-workers,

however, successfully applied the NISE method to simulate the

2DIR spectra at different waiting times.49,50 They used the

trick that the propagation of the harmonic term is trivial, when

propagation of the singly excited states is known and the

anharmonic part of the Hamiltonian is rather sparse. The time

evolution of the double-excited states can then be found with

the Trotter formula.49,50 It should be emphasized that this is

an approximation, where the error term is proportional to the

commutator between the harmonic and anharmonic parts of

the Hamiltonian and the square of the small time interval. The

error can, thus, be reduced by using small time intervals. By

employing this approximation, the NISE method should also

FIGURE 4. Population of different symmetry states in trpzip2 after
an initial excitation of the (a-)s state. Reprinted with permission
from ref 39. Copyright 2008, Biophysical Society.

FIGURE 5. 2DIR spectra of trpzip2 at different waiting times. The
arrow highlights one of the cross-peaks growing because of
population transfer between the vibrational states. Contour lines
are drawn as in Figure 3. Reprinted with permission from ref 39.
Copyright 2008, Biophysical Society.

FIGURE 6. Population transfer between amide I and amide II in
N-methyl acetamide in D2O. The calculated population in the amide
II mode after an initial excitation of the amide I mode (solid black
line, left y axis) is compared to the relative cross-peak intensity
(blue line, right y axis). The population transfer was fitted with an
exponential function with a 790 fs time constant (dashed black line,
left y axis) Reprinted with permission from ref 19. Copyright 2008,
American Institute of Physics.
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be applicable to the calculation of 2DIR spectra of other

extended systems, such as proteins, DNA, and other macro-

scopic systems of biological relevance.

Outlook
As demonstrated above, the NISE approach allows for the sim-

ulation of spectra involving very general dynamical processes

in a wide variety of systems. The approach, however, still has

a few limitations that pose a challenge for the development

of better simulation methods in the future. The fundamental

approximation that NISE relies upon is the fact that the bath

is not affected by the excitation of the vibrations, which allows

for the molecular dynamics to be performed independently of

the spectral simulation. In reality, the bath degrees of coordi-

nates are of course influenced by the vibrational excitation.

The neglect of this effect has several consequences, where the

most significant is the lack of thermalization in the NISE sim-

ulation. If one waits long enough, all levels will be equally

populated and not obtain the population predicted by the Bolt-

zman factor.

Approaches that allow for correct thermalization include the

time-dependent self-consistent field method,51 where bath

and system degrees are simulated simultaneously, including

the feedback to the bath, and stochastic Schrödinger and Liou-

ville equations52 based on the influence functional formal-

ism.53 These more elaborate methods are, of course, also

more time-consuming and challenging to apply to large

systems.

In all of the discussed examples, the necessary parame-

ters for the fluctuating Hamiltonian were known. For small sys-

tems, it should be possible to combine the NISE method with

a minimization algorithm to fit a few unknown parameters.

Despite the above-mentioned minor drawback of the NISE

method, it is very well-suited for simulating 2DIR spectra of

dynamical systems. It requires no a priori knowledge of what

motion is important for the spectral waiting time dependence

and no assumption that the dynamics is Gaussian. The

method can be applied to extended systems, ranging from

large peptides and small proteins to bulk water.
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